Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Community detection plays a central role in uncovering meso scale structures in networks. However, existing methods often suffer from disconnected or weakly connected clusters, undermining interpretability and robustness. Well-Connected Clusters (WCC) and Connectivity Modifier (CM) algorithms are post-processing techniques that improve the accuracy of many clustering methods. However, they are computationally prohibitive on massive graphs. In this work, we present optimized parallel implementations of WCC and CM using the HPE Chapel programming language. First, we design fast and efficient parallel algorithms that leverage Chapel’s parallel constructs to achieve substantial performance improvements and scalability on modern multicore architectures. Second, we integrate this software into Arkouda/Arachne, an open-source, high-performance framework for large-scale graph analytics. Our implementations uniquely enable well-connected community detection on massive graphs with more than 2 billion edges, providing a practical solution for connectivity-preserving clustering at web scale. For example, our implementations of WCC and CM enable community detection of the over 2-billion edge Open-Alex dataset in minutes using 128 cores, a result infeasible to compute previously.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Large Language Models (LLMs) are increasingly used to automate software development, yet most prior evaluations focus on functional correctness or high-level languages such as Python. As one of the first systematic explorations of LLM-assisted software performance engineering, we present a comprehensive study of LLMs’ ability to generate efficient C implementations of graph-analysis routines—code that must satisfy stringent runtime and memory constraints. This emerging field of LLM-assisted algorithm engineering holds significant promise, as these models may possess the capability to design novel approaches that improve existing algorithms and their implementations. Eight state-of-the-art models (OpenAI ChatGPT o3 and o4-mini-high, Anthropic Claude 4 Sonnet and Sonnet Extended, Google Gemini 2.5 Flash and Pro, xAI Grok 3-Think, and DeepSeek DeepThink R1) are benchmarked using two distinct approaches. The first approach evaluates the ability of LLMs to generate algorithms that outperform existing benchmarks. The second approach assesses their capability to generate graph algorithms for integration into performance-critical systems. The results show that Claude Sonnet 4 Extended achieves superior performance in ready-to-use code generation and efficiency, outperforming human-written baselines in triangle counting. Although our findings demonstrate that contemporary LLMs excel in optimizing and integrating established algorithms, the potential for these models to eventually invent transformative algorithmic techniques represents a compelling frontier for future research. We provide prompts, generated code, and measurement scripts to promote reproducible research in this rapidly evolving domain. All of the source code is available on GitHub at https://github.com/Bader-Research/LLM-triangle-counting/.more » « lessFree, publicly-accessible full text available September 15, 2026
-
Subgraph isomorphism algorithms face significant scalability bottlenecks on large-scale property graphs due to inefficient vertex-by-vertex search that requires extensive exploration of early search tree levels where pruning is minimal. We present HiPerMotif, a hybrid parallel algorithm that overcomes these limitations through edge-centric initialization. HiPerMotif first reorders pattern graphs to prioritize high-connectivity vertices, then systematically identifies and validates all possible first-edge mappings before injecting these pre-validated partial states directly at search depth 2. This approach eliminates costly early exploration while enabling natural parallelization over independent edge candidates. Comprehensive evaluation against state-of-the-art baselines (VF2-PS, VF3P, Glasgow) demonstrates up to 66x speedup on real-world networks and successful processing of massive datasets like the 150M-edge H01 human connectome that cause existing methods to fail due to memory constraints. Implemented in the open-source Arkouda/Arachne framework, HiPerMotif enables previously intractable large-scale network analysis in computational neuroscience and related domains.more » « lessFree, publicly-accessible full text available September 15, 2026
-
This paper introduces a novel, parallel, and scalable implementation of the VF2 algorithm for subgraph monomorphism developed in the high-productivity language Chapel. Efficient graph analysis in large and complex network datasets is crucial across numerous scientific domains. We address this need through our enhanced VF2 implementation, widely utilized in subgraph matching, and integrating it into Arachne—a Python-accessible, open-source, large-scale graph analysis framework. Leveraging the parallel computing capabilities of modern hardware architectures, our implementation achieves significant performance improvements. Benchmarks on synthetic and real-world datasets, including social, communication, and neuroscience networks, demonstrate speedups of up to 97X on 128 cores, compared to existing Python-based tools like NetworkX and DotMotif, which do not exploit parallelization. Our results on large-scale graphs demonstrate scalability and efficiency, establishing it as a viable tool for subgraph monomorphism, the backbone of numerous graph analytics such as motif counting and enumeration. Arachne, including our VF2 implementation, can be found on GitHub: https://github.com/Bears-R-Us/arkouda-njit.more » « less
-
Finding connected components in a graph is a fundamental problem in graph analysis. In this work, we present a novel minimum-mapping based Contour algorithm to efficiently solve the connectivity problem. We prove that the Contour algorithm with two or higher order operators can identify all connected components of an undirected graph within O(log d_max) iterations, with each iteration involving O(m) work, where d_max represents the largest diameter among all components in the given graph, and m is the total number of edges in the graph. Importantly, each iteration is highly parallelizable, making use of the efficient minimum-mapping operator applied to all edges. To further enhance its practical performance, we optimize the Contour algorithm through asynchronous updates, early convergence checking, eliminating atomic operations, and choosing more efficient mapping operators. Our implementation of the Contour algorithm has been integrated into the open-source framework Arachne. Arachne extends Arkouda for large-scale interactive graph analytics, providing a Python API powered by the high-productivity parallel language Chapel. Experimental results on both real-world and synthetic graphs demonstrate the superior performance of our proposed Contour algorithm compared to state-of-the-art large-scale parallel algorithm FastSV and the fastest shared memory algorithm ConnectIt. On average, Contour achieves a speedup of 7.3x and 1.4x compared to FastSV and ConnectIt, respectively. All code for the Contour algorithm and the Arachne framework is publicly available on GitHub {https://github.com/Bears-R-Us/arkouda-njit), ensuring transparency and reproducibility of our work.more » « less
-
Finding connected components in a graph is a fundamental problem in graph analysis. In this work, we present a novel minimum-mapping based Contour algorithm to efficiently solve the connectivity problem. We prove that the Contour algorithm with two or higher order operators can identify all connected components of an undirected graph within O(log d_max) iterations, with each iteration involving O(m) work, where d_max represents the largest diameter among all components in the given graph, and m is the total number of edges in the graph. Importantly, each iteration is highly parallelizable, making use of the efficient minimum-mapping operator applied to all edges. To further enhance its practical performance, we optimize the Contour algorithm through asynchronous updates, early convergence checking, eliminating atomic operations, and choosing more efficient mapping operators. Our implementation of the Contour algorithm has been integrated into the open-source framework Arachne. Arachne extends Arkouda for large-scale interactive graph analytics, providing a Python API powered by the high-productivity parallel language Chapel. Experimental results on both real-world and synthetic graphs demonstrate the superior performance of our proposed Contour algorithm compared to state-of-the-art large-scale parallel algorithm FastSV and the fastest shared memory algorithm ConnectIt. On average, Contour achieves a speedup of 7.3x and 1.4x compared to FastSV and ConnectIt, respectively. All code for the Contour algorithm and the Arachne framework is publicly available on GitHub {https://github.com/Bears-R-Us/arkouda-njit), ensuring transparency and reproducibility of our work.more » « less
-
Finding connected components is a fundamental problem in graph analysis. We develop a novel minimum- mapping based Contour algorithm to solve the connectivity problem. The Contour algorithm can identify all connected components of an undirected graph within O (log 𝑑𝑚𝑎𝑥 ) iterations on 𝑚 parallel processors, where 𝑑𝑚𝑎𝑥 is the largest diameter of all components in a given graph and 𝑚 is the total number of edges of the given graph. Furthermore, each iteration can easily be parallelized by employing the highly efficient minimum-mapping operator on all edges. To improve performance, the Contour algorithm is further optimized through asynchronous updates and simplified atomic operations. Our algorithm has been integrated into an open-source framework, Arachne, that extends Arkouda for large-scale interactive graph analytics with a Python API powered by the high-productivity parallel language Chapel. Experimental results on real-world and synthetic graphs show that the proposed Contour algorithm needs less number of iterations and can achieve 5.26 folds of speedup on average compared with the state-of-the-art connected component method FastSV implemented in Chapel. All code is publicly available on GitHub (https://github.com/Bears-R-Us/arkouda-njit).more » « less
An official website of the United States government

Full Text Available